What's Hot! | Products/ Tools | EFI Tuning | Basic Tuning | Advanced Tuning | Chassis Tuning | Advertise with us |
The Major Factor Governing Cooling System Heat Transfer
Cooling system heat transfer is governed by a single major factor-the heat load to the cooling system. Under “steady-state” conditions, the heat load to the cooling system (the heat rejected by the engine to the cooling system) will be transferred to the cooling air by the radiator no matter how good or how poor the radiator. So, if both a “poor” radiator and a “good” radiator will both transfer the same heat load to the cooling air, how can we say that one radiator has better heat transfer performance than the other? The answer is that, under “steady-state” conditions, with a “good” radiator in the cooling system, the radiator inlet temperature (Radiator top tank temperature) will stabilize at a lower temperature than a “poor radiator” in place. The “poor radiator may be so poor that its coolant temperature may rise to the boiling point resulting in engine overheating.
Temperature Differential
The difference between the radiator average core temperature and the temperature of the cooling air is the driving force behind the transfer of heat from the coolant to the cooling air. When an engine starts and is run up to rated load, the coolant begins to heat up. When there is no thermostat in the system, the coolant flows from the engine through the radiator and back to the engine. Initially, the coolant and metal in the engine absorb the heat being produced and continue to do so until the temperature of these parts exceeds the cooling air temperature. At this point, heat transfer to the cooling air commences. The coolant temperature continues to rise until it reaches a temperature at which the difference between the radiator average core temperature and the incoming cooling air is great enough to transfer the entire heat load to the air. This then becomes a “steady-state” condition.
Heat Load to the Cooling System
The heat load to the cooling system is related to the flow through the radiator and the temperature drop through the radiator by the following expression:
Q = M * cp *dT
Where Q is the heat load BTU/min., M is the mass flow rate of the coolant in BTU per pound per degree F, dT is the temperature drop through the radiator in degrees F, and * indicates multiplication. Since a gallon of coolant weighs about 8.3 pounds, we can replace M in the expression by 8.3 times the coolant flow in gallons per minute, or GPM. The resulting expression is as follows:
Q = 8.3 * GPM * cp * dT
Since the specific heat of the coolant is essentially constant and the coolant flow rate
is constant at rated engine speed, the expression tells us something that surprises most people. That is, for a given heat load and coolant flow rate, the coolant temperature drop through the radiator will be constant, and nothing anyone can do to the design of the radiator can change that. Adding rows or fins or face area or whatever will not change the temperature drop through the radiator. As a general rule, cooling systems are designed to operate with a coolant temperature of about 190 degrees F at the radiator inlet and have about a 10 degree F temperature drop through the radiator at rated power and rated coolant flow. This will result in a bottom tank temperature of 180 degrees F.
Note that the coolant temperature drop through the radiator must be specified in degrees F or degrees C, not percent. Taking a percentage of the radiator inlet temperature will yield different results depending on whether the inlet temperature is given in degrees F or degrees C.
Page 2/7
ATTENTION READER:
If you enjoyed the information and article you just read be sure to check out our newly released book with even more exciting photo's and information:How to Turbocharge and Tune your Engine
Want to know more about your particular Make and Model vehicle? All of these vehicles are covered in the tech, maintenance and repair articles found above. Enginebasics is the wiki or wikipedia of car part, repair, how to and tuning information. Let us be the class 101 for your automotive learning.
Ford | General Motors GM | Pontiac | Jaguar | Land Rover | Nissan |
Toyota | Honda | Lexus | Acura | Lotus | Scion |
Infinity | BMW | Mercedes | Mitsubishi | Ferrari | Maserati |
Lamborghini | Volks Wagen VW | Saab | Audi | Hyundai | Kia |
Subaru | Mazda | Chevy | Volvo | Caddilac | Dodge |
Chrylser | Daewoo | Porsche | Mercury | Freightliner | MG |
Individual Models
Ford Mustang | Mitsubishi Eclipse | Mitsubishi Evo | Subaru WRX / STI | Dodge Viper | Chevrolet Corvette |
Nissan Skyline | Honda S2000 | Nissan 350z | Toyota Supra | Chevy Camaro | Lotus Elise Exige |
Honda Civic | VW Golf | Dodge SRT-4 | Eagle Talon | Acura Integra | BMW M3 |
Nissan 240sx | Porsche 911 | Acura NSX | Honda Accord | Toyota Camry | Toyota MR2 |
VW R32 | Dodge Truck | Mazda Rx7 | VW Jetta | Sand Buggy | Nissan Sentra |
For the latest Automotive news and stories visit the websites below |
Our feature Build: An AWD V6 Civic